

November 17, 2015

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ Q & 3 & 0 & 3 \\ -1 & -1 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ Q & 3 & 0 & 3 \\ -1 & -1 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 2 \\ Q & 3 & 0 & 3 \\ -1 & -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 2 & -1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 2 & -1 \\ 0 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 2 & -1 \\ 0 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 2 & -1 \\ 0 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 2 & -1 \\ 0 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & -2 & -1 \\ 0 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 0 & 3 \\ -1 & -1 & 1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 0 & 3 \\ -1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 2 & -1 & 0 & 3 \\ -1 & 1 & 1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 &$$

1. Show that v_1 , v_2 , v_3 are independent but v_1 , v_2 , v_3 , v_4 are dependent:

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \qquad v_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \qquad v_4 = \begin{bmatrix} 2\\3\\4 \end{bmatrix}.$$

Solve $c_1v_1 + \cdots + c_4v_4 = 0$ or Ac = 0. The *v*'s go in the columns of *A*.

The columns of A are independent exactly when $N(A) = \{\text{zero vector}\}.$

